
SOME LIMIT THEOREMS FOR MARKOV PROCESSES 

BY 

S. HOROWITZ(~) 

The aim of this paper is to prove some limit theorems for Markov processes 
using only functional analytic methods. Some of our results were proved in [7], 
[8] and [5] by probabilistic methods. We prove in the Appendix a theorem on 
Markov processes that have no finite invariant measure. 

1. Definitions and notations. Let (X, E, m) be a measure space, such that m is a 
probability measure. Let P(x,A) be a Markov transformation, i.e. a function 

on X x ~ such that, for each x ~ X, P(x, ") is a probability measure and for 

each A ~E, P( . ,  A) is a measurable function. A Markov transformation induces 

an operator on B(X,E), the space of  the bounded and measurable function, 

and on M(X,Y,) the space of  the signed measures, by: 

(ef)(x) = f f(y) P(x, dy) (1.1) 

(1.2) (vP)(A)= f P(x,A)v(dx). 
o 

Thus, if l~t denotes the characteristic function of  A ~ ~ and fix the Dirac measure 

at x then 

(Pl~t) (x) -- P(x,A), (tSxe) (A) = P(x, a). 

Eq. (1.2) will occasionally be used for a-finite positive measures. 

The two operators are related by 

(1.3) f (Pf)(x)v(dx) = ,I f(x)(vV)(dx ). 

The iterates of  P are defined inductively by 

P"(x,A) = f P~-k(x, dy)pk(y,A), 0 < k (1.4) < tl. 

The definition corresponds to the notion of  powers of  the operator P considered 

either on bounded measurable functions or on signed measures. The measure 
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m is assumed to satisfy 

(1.5) m ~- mP 

(rap is absolutely continuous with respect to m). Hence if  re(A)= 0 then 
P(x, A) = 0 a.e. with respect to m (a.e. m). 

We shall also define the operator/ ,4,  for A e Y., by 

(1.6) IAf(x)  = 1A(x) ' f (x)  

(1.7) vIA(B ) = v(B h A ) .  

DEFINITmN 1. The process ( X , Z , m , P )  is said to be conservative i f  for every 
A e X  with re(A)> O, ~,:=oP(IAoP)"I,4(x) = 1 is satisfied a.e. m on A .  

The process is called ergodic i f  P(x ,A)  = 1A(x) implies re(A) = 0 or re(A) = 1. 

It can be shown that if the process is conservative and ergodic then 
~,~= o P(Ia=P)"la(x) = 1 a.e.m, for every A with re(A) > 0 (see, for example, 

[2] Theorem 2.3). 

RrM~a~K. ~=oP(Ia=P)*lA(x) is the probability that x enters A at least once. 

2. Processes with an hlvariant measure. In the rest of this paper we shall as- 
sume the following: 

ASSUMPTION 1. The process is conservative and ergodic and there exists a 
a finite measure # which is equivalent to m, and It = ItP. 

It is easy to see that P is well defined as an operator on Lp(X,Z, It) for every 
l < p <  oo. 

If If(x)l<M then [Pf(x)l<M, hence l iP i loo<l .  On the other hand, 

efl  _<_ e f , =felf l I t (dx) = flflItP(dx) =-SlflIt(dx) = Ilftl,, hence 
P l < = l .  
Thus by the Riesz Convexity Theorem the operator P is a contraction on 

Lo(x, Z, It) for every 1 -< p < oo. Let us now consider the action of P on the signed 
measures. It is easy to see that i f  v -< It then also vP -< #,  or P leaves the subspace, 
consisting of signed measures that are weaker than It, invariant. I f  v .< # then 
dv = fdI t  w h e r e f e  Ll(x,  Z, It) is the Radon-Nikodim derivative of v with respect 

to #.  
Let us denote: 

dvP ~ 
(2.1) fP~ = g iff  whenever dv = f d #  then g = d# " 

This is the adjoint operator of  P,  i.e. P*f  = f P .  Because of assumption 1, it 
is dear :  

(2.2) P*I = 1P = 1, 
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so it is clear that P* is also a contraction on Lp(X,•,it) for every 1 < p _~ oo. 
Notice that P* is defined as an operator on Lp(X, Y., It) and need not be induced 
by a Markov transformation. 

3. P as an operator o n  L2(X,~,,It ) 
Let us consider P as an operator on L2(X , ~, #); we denote 

(3.1) K : I IP"s l l - - I IP* f l l  = Ilsll, Vn} 
(3.2) X~ = the a-field generated by sets A with 1A ~K.  

In [3] the following results are proved: 
(a) K is invariant under P and P*, and P restricted to K is a unitary operator. 
(b) I f f  Z K then weak limPnf = weak limP*~¢ = 0. 
(c) K =L2(X, Xl, It) equivalentlyfe K i f f f~  Lz(X, Y., It) and is Xl measurable. 
(d) I fA ~Xl and It(A) < oo then Pla  and P*l,t are both characteristic funct- 

ions of sets in Et.  

ASSUMPTION 2. The set Y,x is atomic. 

If #(X) = oo then Z1 = 4 ,  if It(X) < oo then El = { W U P W U . . .  UPk-iW} 
and pkw  = W, because of the assumption that P is ergodic and conservative. 
The integer k is called the order of W. 

The following theorem is a simple consequence of theorem 8 of [3]. 

THEOREM 1. Let v.< v,  be a finite measure; then 
(a) I f #  is an infinite measure then for every set A with It(A)< oo, 

lim,~o(vPO (A) = O. 
(b) I f#  is a probability measure and A c W, where ~1 = { W u PW u x pk- 1 W} 

then 

lim (vP ~* +') (A) = kl~(A) (vPO (W). 
11-4,00 

REMARK. Theorem 1 remains true if we replace P by P*. 

4. Markov processes satisfying Harris' condition. Let (X, 1~, m, P) be a Markov 
process as in Section 1. 

DEFINITION 2. The process is said to satisfy Harris' condition if m(A) > 0 
implies 

(4.1) ~ P(IA=P)qa(x) = 1 for all x ~ X .  
n = 0  

It is well known (see, for example, [2], [5], [7], [8]) that Harris' condition implies 
Assumption 1. Let us denote 
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(4.2) P"(x, . ) = Q,(x, . ) + R,(x , .  ) 

Q,(x, . ) ~. m ,  R,(x, . ) _1_ m 

¢n(X,y) = dQ,(x,.) where /~ ~ m, tt = / t P .  
dl~ 

We shall assume that X is separable, then ¢n(X,y) is Z x X measurable. 
I f  Harris '  condition is satisfied then for each x, and for each set A with/~(A) > 0 

there is an integer n such that Q,(x, A) > O. 
Because if there is an x and a set A with/~(A) > 0 and Q,(x, A) = 0 for all n. 

then P"(x,A) = R,(x ,A) .  Let F,  = suppR,(x, . ) ,  F = U , ~ I F , ,  #(F) = 0. 
hence ]~,~= 1P"(x, A - F) = 0. But #(A - F) > 0, and this contradicts Harris '  

condition. 
Theorem 6 of  [3] says that if  A is in the non-atomic part of  E l ,  then 

#{x I Q,(x, A) > 0} = 0 for every n, therefore Harris" condition implies that Z 1 
is atomic. 

In the following lemma we shall give a condition that is equivalent to Harris' .  

LEMMA. The process (X ,Z ,m ,P)  satisfies Harris" condition i f  and only i f  
for  every set N with m(N) = 0 

(4.3) lira P"(x,N) = 0 for  all x e X .  
n.-~ oo 

We shall first prove two propositions: 

PROPOSITION 1. For every integer n and for every set A ,  

(4.4) ~ (IacP)~la(x) + (IaoP)" + t l(x) = 1 
k = 0  

Proof, By induction. For  n = 0: 1a + IaoP1 = la  + lao = 1. Assume for n, 
we shall prove for n + 1: 

n + l  

2~ (Iaop)kl4 + (IAoP) "+2 1 = ~ (IaoP)kla + (laoP)"+tla + (taoP)"+XlaoP1 
k = t  k = 0  

= ~ (Iaop)kla + (IaoP)n+l(la + lac) = ~ (IaoP)kla + (Ia.P)n+11 = 1. 
k = O  k = O  

PROPOSITION 2. For every x ~ X  and for every set A ,  the sequence 
~ = o  Pk(IaoP)"la is decreasing, and therefore the limit 

lim ~ Pk(Ia.P)nla(x ) 
k ~ o o  n=O 

exists. 
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Proof. 

]~ pk+ l(iacp). 1A(x) = ~ pklA~P(iA~p)n 1A(X ) 
n=O n=O 

+ ~ pklaP(IaoP)"la(x) = ~ pk(IAoP)'IA(x) 
n = O  n = l  

+ P~A ~ P(IaoP)"la(x) = ~ Pk(lacP)"la(x)- Pkla(x) 
n=O n=O 

+ pklA ~ P(IaoP)"IA(x)= ~ pk(IAoP)"IA(X ) 
n=O n=O 

Because 1 -  

- pklA 1 -  (IAoP)"IA(X <= Pk(IA~P)"IA(X), 
n = O  

oo nl x = ~,, = o P(I~,P) a( ) > O. 

REMARK. 

limk-, ~ ~'n °°-- 0 pk(IA~P)"IA(x) is the probability that x enters A infinitely many times. 

P r o o f  o f  the  L e m m a .  

(a) Assume Harris' condition is satisfied. If  N is a set with m(N) = 0, let us 
denote F = {x [ ]~= 1 P'(x, N) > 0}, then, by m ~ raP, m(t)  = 0. But 

P"(x,N) = (It,P)"(x, N). 

This can be proved inductively, assume P"I N = (It,P)"IN, and then: 

p"+xlN --. p p n l n  --. P(IFP)nl  N = (IFP) n+l l  N + (IFcP)(IFP)nl  n .  

but (IFoP)(It,P)"I n ~ IFoP"+ll N = O, hence P'+Xl N = (It,P)"+ll N. By Propo- 
sition 1 ~,'],210(lt,p)klvo(X) + (lt,P)"l(x) = 1. Let n tend to oo, then by Harris' 
condition, 

lim ]~ (I~p)klvc(X) = (It,p)klt,.(X) = lt,o(X) 
n--+ oo k = O  k = O  

Hence: 

+ It, ~ P(It,p)klFc(X) = lt,.(X) + lt,(X) = 1. 
k=0 

lim P"(x,N) = lim (IFP)"(X, N) <= lim (It,P)"l(x) = O. 
n--~ oo n.--~ oo n -~oo  

(b) Assume (4.3). By Assumption 1 the process is conservative and ergodic. 
Therefore for every A e E, with re(A)> 0, there exists a set N with m(N)= 0 
so that for every x e N c, ~,~=oP(IAcP)"la(x) -- 1, (N may depend on A). We 
shall prove that N = ~ .  Assume the contrary, take x e N then 
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P( I x°P )q A( x ) < 1. 
n = O  

But 
oo 

P(IAoP)nla(x) ~_ lim X P~(Ia°P)qA(x) 
n = 0  k-~o0 n=O 

-- lim I#(INo + IS) ~ P(IAoP)'la(x) > Iim PklNo P(IacP)nlA(x) 
k--* oo n = 0  k~oo n = O  

= limk_,oo f s  .I#(x'dy)n=o ~ P(I~'P)nla(Y) = limk.,o~ t#(x'NC) = 1, 

by (4.3). Hence x 6 N, a contradiction. Therefore N = ~ .  
REMARK. The "only if"  part of our lemma is lemma 2.4 of Jain [5]. 

DEFINITION 3. The process (X, ~;, m, P) is said to satisfy Doeblin's condition 
if there exists an integer d such that if m(N) = 0 then sup {Pd(x, N) I x e X} < 1. 

Let us put in theorem 10 of  [3] # = 6ix, 6~pn = zn + an where %-<m, o, £ m, 
then if m(N) = 0, 

lim Pn(x,N) = lim on(N) < lira on(X) = O. 
/I-cO0 It-cOo N-cOo 

Hence Doeblin's condition implies Harris' condition. On the other hand, in [6] 
there is an example that satisfies Harris' condition but not Doeblin's condition. 

REMARK. There is no loss generality in assuming that the process is ergodic: if 
(4.3) is satisfied then P(x,A) = In(x) implies re(A)> 0. Hence X = I,.JjAj 
where each Aj is ergodic. 

THEOREM 2. Let v be a finite measure, let P satisfy Harris' condition, and 
vpn = ~n + On where %-<m, an I m, then limn-.Oo on(X) = O. 

Proof. Let Rn(x,. ) as in (4.2). Let us first prove: 

(4.5) lim Rn(x,X) = 0 for all x e X .  
n-~OO 

Let F,  = suppRn(x, .) ,  (Fn depends on x) F = I,.JT=lFn then m(F)= 0, and 

by (4.3) 
lim Rn(x,X) = lim R,(x,F)= lira P'(x,F) = O. 

Let v be any measure, then, 

= f I L I 
+ f R.(x,A) v(dx) 

d 
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so, vQn.< # (or vQn-< m). Hence ,n(X) < yR,(X) and by (4.5) and by the dominated 
convergence theorem we have: 

lira ~(X)_-< lira vRn(X) = O. 
~1"* O0 n " *  O0 

THEOREM 3. Assume that P satisfies Harris' condition. Let # be the invariant 

measure of Assumption 1, 
Let v be any finite measure. Then: 

(a) I f  # ( X ) =  oo then for every A ~ ,  with #(A)<  oo, lim,_.oovPn(A) = O. 
(b) I f  # ( X ) =  1 and ~,l = { W U P W U  ... LTP~- iw)  then for every A c  W, 

lim~_. ~o v I~k +' = k" #(A) (vP') (W). 

Proof. (a) If  # is infinite, let vP n = z~ + tT, where zn-<#, o's.L#. For each 
> 0 we can choose an integer n o such that trno(X ) < e, by Theorem 2. Hence, 

for every set A with #(A) < oo: 

vP~(A) = z,op~-nO(A) + tr, oP~-'°(A) < -r~opn-'O(A) + tr~oP~-~°(X) 

< z,oP~-n°(A) + tr,o(X) < z, oP'-"°(A) + ~. 

But limn~®%o/~-~°(A)= 0, by Theorem 1, and e is arbitrary, therefore 
lim,_~oovP'(A) = O. 

(b) If  # is a probability measure, let vP" = z, + tr n where zn~( #,  ~, .k #. 
For each ~ > 0  we can choose an integer no such that tr, o(X ) < , ,  and 
Z,o(X ) > v ( X ) -  8. Let us first assume that Y'I is trivial and v (X)=  1. Then: 
lim,_,oo Z, olW'-"°(A) = #(A)'zno(X) by Theorem 1. Hence, for every n sufficiently 
large, 

- "~-"°:A" < # ( A )  + ~. #(A)(1 - 2 e )  < z,or t : = 

Also, for all n, *rno/~-~°(A) _-< tr, oP~-n°(X) < ~ o ( X ) <  e. Hence: 

#(A)(1 - 28) < vP"(A) = zno/~-"°(A) + a~o/~-"°(A) < #(A) + 2, .  

But e is arbitrary, therefore lim~_.o~ vPn(A) = #(A). The generalization for Zt 
of order k is obvious. 

I f  we choose v = 3x we get: 

COROLLARY. Let P, #, l~, 1 as in Theorem 3, then for every x ~ X :  
(a) I f #  is infinite then #(A) < oo implies lim,_,®P~(x,A) = O. 
(b) I f  # is a probability measure then A c W implies 

lim Pnk+'(x,A) = k#(A) 'P'(x ,  BO. 
n..~ oo 

REMARK. Part (a) of this corollary is Theorem 2.5 of Jain [5]. Part (b) appears, 
for example, in [8]. 

THEOREM 4. Let P, X t, # beasin Theorem 3,part(b), then for every A c W, 
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lim P*"~+'la(x ) = klz(A).P*'lw(x ) a.e. /z. 
$1"* O0 

Proof. Let us first assume that Xt is trivial. Let P"(x, A) = Q,(x, A) + R,(x, A) 
as in (4.2). Let Q, and R, be the operators that are induced by Q,(x, • ) and R,( . ,  • ) 
respectively. For all x ~X,  lim,_~o~Rn(X,X)= 0 by (4.5). By the dominated con- 
vergence theorem we have lim,..® f R*llt(dx) = lim,_.~o f R,l#(dx) = O, where 
R* is the adjoint of  R n. Hence we can find a sequence of integers {nk} such that 
limk~oR*~l(x) = 0 a.e. /z. Hence for every x ~ X  that is not in an exceptional 
nil set, there can be found an integer nko such that R*~ol(X ) < ~. 

Let us write P*" = Q* + R*. 
Q, is an integral operator with the kernel $,(x, y), and therefore Q* is also an 
integral operator with the kernel ~b,(y,x). Hence: 

• , n - n k  p*nlx(x ) = Q*koP,n-n%lx(x) + RnUo P o Ix(x). 

But 

Hence 

Denote: 

R*koP*"-"~ola(x ) <= R.*koP*n-"~ol(x ) = R*kol(X ) < ~. 

f. 
¢SxQ*ko(A) = Q"*o la(x) = )a c~"ko(Y' x) #(dy). 

6xQ*ko is a measure absolutely continuous with respect to #,  and 6xQ*k(X)> 1 - e. 
Hence lim,_,oo ~Q*op*"-"~o(A) = I~(A)'~L,Q*~o(X), by Theorem 1. Therefore, for 
every n sufficiently large we have: 

t~(A)(1 - 2 0  ~ 6~Q*~ P*"-"~°(A) <= t*(A) + ~. 

Hence 

/~(A)(1 - 2e) < 6~Q*koP*"-nko(A) < P*"la(x) < 6xQ*koP*n-"k°(A) + 8 

< + 

B u t ,  is arbitrary, therefore lim,~ooP*"la(x ) =/~(A). The generalization for xl  
of order k is obvious. 

THEOREM 5. Let P, Y~t,l* be as in Theorem 4. Let v be any finite measure 
supported on W, then 

(4.6) ]l vPnk+r-- k" vP'(W) " l~ IP~-'w[[ > 0 
n--~ O0 

Proof. Let us first assume that Zt is trivial. 
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dv 
If  v ~(# and f = ~ ,  we shall prove: 

(4.7) fP"  Z l f > fd# 
n . . . ~ o o  

115 

f p ,  LI I > fdu.  
n - - ~ o o  • 

(b) Let v be any finite measure. 
Denote vP" = z. + a. where •. -'(it, a . .L #. For each e > 0, choose an integer 

n o such that 

a,o(X) < 5, r~o(X) > v ( X )  - ~ .  

Hence 

II vPn-  v(g)~ll = tl,noP "-'° + ~ ,oP' - 'o-  v(x) .  ~1[ ~ l[,,oP " - ' ° -  , ,o (x) .~  II 

+ II(,.o(X)-~(x))~ll + [I ~noP'-~°[]=< II,.oe°-n°-,~o(x)" I,[l + 

+ (v(x) - , ,o (X)) l [  ~ II + II ~,oll --< llano P"-n°-  ~.o(X)" ~l[ + 2e. 
r l - - n  o By (4.7) we have II,.oP - , ~ o ( S ) .  ~ll -" 0 and e is arbitrary, therefore 

I1"* O0 

l lvP"-~(x) '~l l- ,  o. The generalization to the case where E t is of order 
11--+O0 

k, is obvious. 
R~r~ARK. Our theorem 5 was first proved by Orey in [8] Theorem 3.1. His 

proof was complicated. Another proof was given by Jamison and Orey in [7]. 
Their proof is by probabilistic methods. Our analytical proof seems more simple. 

5. Strong mixing in L,(#). Consider the Markov process (X, Y~, #, P) where 
#P = #, and # is a probability measure. 

DEFINITION 4. (a) P is strong mixing in LI(#) if for every probability measure 
v "</l, 

(5.1) rl vP'-~11 > 0, or equivalently 
n--* oo 

(5.2) f p ,  L1 > f fd# for every feL, (#) .  
n - ~ o o  • 

what is equivalent to (4.6). 
For every characteristic function 1A we have, by Theorem 4, limn-,®lAP*(x) 

=lim,.+~P*nlA(x) = #(A) a.e. /~. By the dominated convergence theorem 

1AP"(x) L, > B(A). But the span of the set of characteristic functions is dense 
n--~ oo 

in L,(#),  hence for every feLl(It) we have 
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(b) P is strong mixing pointwise if for every f e  Loo(#), lim,_.ooP~(x)=ffdu 
a . e . g .  

In §4 we saw that if P satisfies Harris' condition then P and P* are strong 
mixing in Ll(#) and pointwise. It is clear that a necessary condition to strong 
mixing in LI(/~) is that Z1 is trivial. But this condition is not sufficient. Further- 
more there is no symmetry between P and P* with respect to this property, as 
we can see from the following example. 

EXAMPLE. Consider the pointwise transformation on the unit interval [0, 1], 
Tx = 2x(mod 1). It induces the operator 

[f(zx) 
Pf(x) = i f(2x - 1) 

O ~ x ~ ½  

½ < x ~ l .  

A simple calculation shows that the adjoint of P is 

2 

We shall prove that the space K, defined in (3.1), contains only the constants, 
and hence X 1 is trivial. 
It is easy to see that 

P*f"(x) = 2-- ~ k=o \ 2" ]"  

Let f be Riemann integrable. Then P*"f(x) is the Riemann sum, hence 
P*"f(x) ~ [flz(dx) for all x. In particular if f .L 1 then P*"f(x) --, O. By 

n - t 0 0  II--~ OO 

the dominated convergence theorem, we have, for every function f.l. 1 that is 
bounded and Riemann-integrable, II e* ll -" 0. But such functions are dense 

n-4OO 

in Li(#). Hence K = {const}, and Xl is trivial. 
We shall now show that P* is not strong mixing in Ll(#). Let f e l t ( # )  and 

f .L 1. fP*"= P"f, but P is an isometry in LI(#), i.e. [[P~f]lt = IIfll,, hence 

fP*" -~ O, and P* is not strong mixing in LI(#). 
M-¢ OO 

On the other hand, P is strong mixing in Lt(#). LetfeLl(/~) and be bounded 
and Riemann-integrable. Then: 

lim fP"(x)= lim P*"./'(x)= f fla(dx) for all x. 
R-~OO n'-~ OO d 

By the dominated convergence theorem, fP" z.-5, f fp(dx) .  But such functions 
n--~ OO 
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are dense in Ll(it). Hence, for every f e  Lt(it), fP"  L.~ ffv(dx), and P is 
n - > o o  

mixing in L~(It). 

strong 

APPENDIX 

Let (X, Z, m, P) be a Markov process, m is a probability measure and m >. mP. 
A is called an invariant set if  P l a  = la  and m(A) > 0. We denote Z~ the col- 

lection of  the invariant sets. If  P is conservative then Z~ is a a-field. 
Y. Ito proved, in [1], the following theorem: 
A necessary and sufficient condition for the existence of  a probability measure 

It, so that m ~ It and ItP = #.  is that for every A with m(A)> 0, we have 

1 
(A.1) lira = ) L P k ( x , A ) > 0  for every x e F  where m ( F ) > 0 .  

n ~  n k = l  

(F depends on A). 

THEOREM. If there is no probability measure I t so that It "< m and ItP = It, 
then there is a decomposition 

(A.2) X = [.3 X j  so that lira -1 pk(x,X~) = 0 a . e . m .  
j = l  n~oo n k=0 

Proof. Assume that P is conservative (on the dissipative part the theorem 
is trivial). We assume that there is not a probability measure # such that p <  m 
and #P = p. Hence, by Ito's theorem there is a set A, with re(A)> 0 and 
lim,_.ool/n ~,[=xPk(x,A)=O, a .e .m.  Let us denote An=suppP"(x,A),  

0 0  a " . X = [,.J,=t n. it lS known (see, for example, [2]) thatXeX~ Let us also denote 
A~ = {x [P"(x, A) > I/i}. Clearly [,J~°= 1 AS, = A,. But 

1 N N 
0 = l i m ~ - ~  Pk+n(x,A)= lim 1 ~ / ~ F ' l ~ t ( x ) >  

N~co k = l  N~co N k = l  

( > ~- lim ~- ~Pk(x,A~),  Pnl a < 7  " 
N-~co k = l  

Hence: lim~_.~o 1IN ~_- Ipk (x ,A~)=  0 a.e. for all Atn, and for the invariant set 
.~ there is such a decomposition ~ = [,3t.nA~. Consider X - ii'. It is an invariant 
set.Therefore we can consider the process on X -  ~', and find as before, A e  X - X 
and A = UT=I Aj so that limn-.~o 1/n ~ = I P k ( x ,  Aj) = 0 for every j .  

Let a r be the collection of all sets A such that (i) A ~ Xi, (ii) A = U7= 1A j ,  
limn.,®l/n ~ = I P k ( x ,  A j ) =  0 a.e. for every j .  Let 0t = s u p a ~ m ( A ) ,  we shall 
prove ct = 1. There is a sequence {As} c ~-  so that re(A37 or. It is clear that 
U3=lA, ear  and hence m(LJ ,~A, )  = ct. If  ~ < 1 then m(X - [.J3=tA,) > 0 and 
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clearly X - U~°= t At ~ z~ and we can consider the process on it and find, as before, 
E =  X - U~=I A~ with re(E) > 0 so that E = U j ~ t  E~ and lim,_, oo 1/n ~,7, =t Pk( x, E j) 
= 0  a.e. for all j .  Hence U~=IA~UE~#"  and m(U~=~A, U E ) > ~ .  

co A contradiction. Hence ~ =  1, and X = U~=~A, and A~ = U ~ I  A u and 
lim,-,oo 1/n ~ = I p k ( x ,  A u ) =  0 a.e. for all j .  So the theorem is proved. 

REMARK. A theorem of this kind was proved by Dean and Sucheston in [1], 
Theorem 2. They proved that if there is no probabilistic measure # so that #~( m 
and #P = #,  then there is a decomposition X = U ~  1 x l  so that: 

lira sup 1 ~ mi~+t(Xj) = 0 for all j .  
. - - , ~  i n k = l  
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